Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Radiat Prot Dosimetry ; 193(3-4): 155-164, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33822208

RESUMO

Shielded garments are widely recommended for occupational radiation protection in diagnostic and interventional radiology. This study investigated a novel method for efficiently verifying shielded garment integrity while simultaneously acquiring data for lead-equivalence measurements, using two-dimensional topogram images from computed tomography (CT) scanners. This method was tested against more-conventional measurements with superficial and orthovoltage radiotherapy treatment beams, for 12 shielded garments containing 3 different lead-free shielding materials. Despite some energy-dependent results, all shielded garments approximately achieved their specified lead-equivalence for the energy range expected during clinical use for fluoroscopy procedures, except for three shielded skirts that required two layers of material to be overlapped at the front. All lead-equivalence measurements from CT topograms agreed with or conservatively underestimated the kV narrow-beam results. This method is potentially useful for independently assessing the shielding properties of new shielded garments and performing annual checks for damage or degradation of existing shielded garments.


Assuntos
Roupa de Proteção , Proteção Radiológica , Imagens de Fantasmas , Doses de Radiação , Espalhamento de Radiação , Tomografia , Raios X
2.
Phys Eng Sci Med ; 44(2): 565-572, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33704691

RESUMO

This study investigates and validates the use of the Octavius 4D system for patient specific quality assurance on Halcyon, which is capable of rotating at 4 revolutions per minute (RPM). A commercially available PTW Octavius 4D system was used for this study which had a maximum rotation speed of 3 RPM. Initial validation included testing the accuracy of the inclinometer, percent depth doses (PDD), output factors, and dose profiles for selected static square fields. The same static fields were also subject to a gamma comparison with the TPS. This was followed by an evaluation of twelve clinical treatment plans and seven non-clinical plans with varying gantry rotation speeds. All testing was completed using detector array measurement times of 200 ms and 100 ms. Inclinometer accuracy was within 0.3° of actual gantry angle. Output factors varied less than 0.6%, PDD differences were no greater than 1.4%, and dose profile differences were less than 2.2%. Gamma pass rates for the static fields were 96.7% (2%/2mm) and 99.7% (3%/3mm). A prototype control unit, which had a maximum rotation speed of 4 RPM was also used to test the clinical and non-clinical plans. For the clinical plans, the mean gamma pass rates (2%/2mm) were 86.1% and 88.1% for the commercial unit and prototype unit respectively. Results using a measurement time of 200 ms were superior to those using 100 ms. For Halcyon deliveries greater than 3 RPM, worst case gamma results for the commercial unit were 28.6% compared to 98.5% using the prototype unit. Accurate patient specific quality assurance results can be obtained using the Octavius 4D system with a Halcyon linac, provided that the system measurement time is kept at 200 ms and the rotation speed of Halycon does not exceed 3 RPM. For higher RPM deliveries, an Octavius 4D unit with 4 RPM rotation capability is recommended.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Rotação
3.
Phys Eng Sci Med ; 43(2): 609-616, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32524448

RESUMO

To calculate small field output correction factors, [Formula: see text], for Gafchromic EBT3 film using Monte Carlo simulations. These factors were determined for a Novalis Trilogy linear accelerator equipped with Brainlab circular cones with diameters of 4.0 to 30.0 mm. The BEAMnrc Monte Carlo code was used to simulate the Novalis Trilogy linear accelerator and the Brainlab cones with diameters 4.0 to 30 mm. The DOSXYZnrc code was used to simulate Gafchromic EBT3 film with the atomic composition specified by the manufacturer. Small field correction factors were calculated according to new IAEA TRS-483 Code of Practice for small field dosimetry. The depth of calculation was 10 cm and a source to surface distance of 100 cm. The X-ray beam used in the simulations was a 6 MV SRS. The correction factors were then used to determine field output factors with Gafchromic EBT3 film. These field output factors were validated using three solid state detectors and applying correction factors from the TRS-483 Code of Practice. The solid state detectors were IBA SFD diode, PTW 60018 SRS diode and PTW 60019 microDiamond. The Monte Carlo calculated output correction factors, [Formula: see text], for Gafchromic EBT3 film ranged between 0.998 to 1.004 for Brainlab circular cones with diameters between 4.0 and 30.0 mm. The uncertainty for these factors was 2.0%. The field output factors obtained with Gafchromic EBT3 film were within 2% of the mean results obtained with the three solid state detectors. For field sizes 4 mm diameter and above, Gafchromic EBT3 film has field output correction factors within 1% of unity. Therefore, Gafchromic EBT3 film can be considered to be correction less and supports the assumption made about this film in the TRS-483 Code of Practice.


Assuntos
Algoritmos , Método de Monte Carlo , Radiometria , Radiocirurgia , Simulação por Computador
4.
Phys Med Biol ; 64(20): 205017, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31505477

RESUMO

A gel dosimeter has been developed utilising a recently reported system for reducing Fe3+ diffusion in a Fricke gel dosimeter which chelates xylenol orange to the gelling agent poly(vinyl alcohol) (PVA). Formulations were investigated using both gelatin and PVA as the gelling agent, along with the inclusion of glyoxal. The resulting gel had an optical density dose response of 0.0031 Gy-1, an auto-oxidation rate of 0.000 23 h-1, and a diffusion rate of 0.132 mm2 h-1 which is a significant improvement over previously reported gelatin based Fricke gel dosimeters. The gel was also shown to be energy and dose-rate independent and could be reused after irradiation. Thus, this gel dosimeter has the potential to provide a safe and practical solution to three dimensional radiation dosimetry in the medical environment.


Assuntos
Géis/química , Dosímetros de Radiação/normas , Difusão , Géis/efeitos da radiação , Fenóis/química , Álcool de Polivinil/química , Radiometria/instrumentação , Radiometria/métodos , Sulfóxidos/química
5.
Phys Med ; 38: 111-118, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28610691

RESUMO

PURPOSE: This study evaluates the radiological properties of different 3D printing materials for a range of photon energies, including kV and MV CT imaging and MV radiotherapy beams. METHODS: The CT values of a number of materials were measured on an Aquilion One CT scanner at 80kVp, 120kVp and a Tomotherapy Hi Art MVCT imaging beam. Attenuation of the materials in a 6MV radiotherapy beam was investigated. RESULTS: Plastic filaments printed with various infill densities have CT values of -743±4, -580±1 and -113±3 in 120kVp CT images which approximate the CT values of low-density lung, high-density lung and soft tissue respectively. Metal-infused plastic filaments printed with a 90% infill density have CT values of 658±1 and 739±6 in MVCT images which approximate the attenuation of cortical bone. The effective relative electron density REDeff is used to describe the attenuation of a megavoltage treatment beam, taking into account effects relating to the atomic number and mass density of the material. Plastic filaments printed with a 90% infill density have REDeff values of 1.02±0.03 and 0.94±0.02 which approximate the relative electron density RED of soft tissue. Printed resins have REDeff values of 1.11±0.03 and 1.09±0.03 which approximate the RED of bone mineral. CONCLUSIONS: 3D printers can model a variety of body tissues which can be used to create phantoms useful for both imaging and dosimetric studies.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Radiografia , Humanos , Pulmão , Fótons , Radiometria , Tomógrafos Computadorizados
6.
Australas Phys Eng Sci Med ; 40(1): 159-165, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28168587

RESUMO

This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.


Assuntos
Algoritmos , Géis/química , Processamento de Imagem Assistida por Computador/normas , Polímeros/química , Dosímetros de Radiação/normas , Tomografia Computadorizada por Raios X/normas , Humanos , Padrões de Referência , Razão Sinal-Ruído
7.
Med Phys ; 43(8): 4687, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487885

RESUMO

PURPOSE: An experimental extrapolation technique is presented, which can be used to determine the relative output factors for very small x-ray fields using the Gafchromic EBT3 film. METHODS: Relative output factors were measured for the Brainlab SRS cones ranging in diameters from 4 to 30 mm(2) on a Novalis Trilogy linear accelerator with 6 MV SRS x-rays. The relative output factor was determined from an experimental reducing circular region of interest (ROI) extrapolation technique developed to remove the effects of volume averaging. This was achieved by scanning the EBT3 film measurements with a high scanning resolution of 1200 dpi. From the high resolution scans, the size of the circular regions of interest was varied to produce a plot of relative output factors versus area of analysis. The plot was then extrapolated to zero to determine the relative output factor corresponding to zero volume. RESULTS: Results have shown that for a 4 mm field size, the extrapolated relative output factor was measured as a value of 0.651 ± 0.018 as compared to 0.639 ± 0.019 and 0.633 ± 0.021 for 0.5 and 1.0 mm diameter of analysis values, respectively. This showed a change in the relative output factors of 1.8% and 2.8% at these comparative regions of interest sizes. In comparison, the 25 mm cone had negligible differences in the measured output factor between zero extrapolation, 0.5 and 1.0 mm diameter ROIs, respectively. CONCLUSIONS: This work shows that for very small fields such as 4.0 mm cone sizes, a measureable difference can be seen in the relative output factor based on the circular ROI and the size of the area of analysis using radiochromic film dosimetry. The authors recommend to scan the Gafchromic EBT3 film at a resolution of 1200 dpi for cone sizes less than 7.5 mm and to utilize an extrapolation technique for the output factor measurements of very small field dosimetry.


Assuntos
Dosimetria Fotográfica/métodos , Raios X
8.
Australas Phys Eng Sci Med ; 39(3): 747-53, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27380010

RESUMO

Given the difficulty and potential time- or financial-costs associated with accurate small field dosimetry, this study aimed to establish the clinical necessity of obtaining accurate small field output factor measurements and to evaluate the effects on planned doses that could arise if accurate measurements are not used in treatment planning dose calculations. Isocentre doses, in heterogeneous patient anatomy, were calculated and compared for 571 beams from 48 clinical radiotherapy treatments, using a clinical radiotherapy treatment planning system, with reference to two different sets of beam configuration data. One set of beam configuration data included field output factors (total scatter factors) from precisely positioned and response-corrected diode measurements and the other included field output factors measured using a conventional technique that would have been better suited to larger field measurements. Differences between the field output factor measurements made with the two different techniques equated to 14.2 % for the 6 [Formula: see text] 6 mm[Formula: see text] field, 1.8 % for the 12 [Formula: see text] 12 mm[Formula: see text] field, and less than 0.5 % for the larger fields. This led to isocentre dose differences of up to 3.3 % in routine clinical fields smaller than 9 mm across and and up to 11 % in convoluted fields smaller than 15 mm across. If field widths smaller than 15 mm are used clinically, then accurate measurement (or-remeasurement) of small field output factors in the treatment planning system's beam data is required in order to achieve dose calculation accuracy within 3 %. If such measurements are not completed, then errors in excess of 10 % may occur if very small, narrow, concave or convoluted treatment fields are used.


Assuntos
Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador , Relação Dose-Resposta à Radiação , Humanos , Dosagem Radioterapêutica
9.
Arch Environ Contam Toxicol ; 71(2): 183-97, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27282707

RESUMO

It is widely understood that stormwater drainage has a significant impact on the health of tidal creek systems via regular inputs of runoff from the surrounding watershed. Due to this hydrologic connection, contamination of the upstream drainage basin will have a direct effect on estuaries and tidal creeks that often act as receiving waters. This study focuses on the importance of drainage basin sediments as they enhance the persistence and transport of the fecal indicator bacteria E. coli within a watershed. Experiments presented use microcosm environments with drainage basin sediments and stormwater to investigate E. coli colonization of stagnant waters and to examine the importance of host sources to bacterial survival. A novel method for establishing microcosms using environmental sediments with in situ bacterial populations and sterile overlying waters is used to examine E. coli colonization of the water column in the absence of flow. Colonization of sterile sediment environments also is examined using two common host sources (human and avian). Each experiment uses sediments of varying grain size and organic content to examine the influence of physical characteristics on bacterial prevalence. Results suggest host source of bacteria may be more important to initial bacterial colonization while physical characteristics of drainage basin sediments better explains extended E. coli persistence. Findings also suggest an indirect control of water column bacterial concentration by sediment type and erodibility.


Assuntos
Monitoramento Ambiental , Escherichia coli/fisiologia , Microbiologia da Água , Drenagem Sanitária , Águas Residuárias/microbiologia
10.
Australas Phys Eng Sci Med ; 39(3): 633-44, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27325526

RESUMO

This study provides a bulk, retrospective analysis of 151 breast and chest wall radiotherapy treatment plans, as a small-scale demonstration of the potential breadth and value of the information that may be obtained from clinical data mining. The treatments were planned at three centres belonging to one organisation over a period of 3 months. All 151 plans were used to evaluate inter-centre consistency and compliance with a local planning protocol. A subset of 79 plans, from one centre, were used in a more detailed evaluation of the effects of anatomical asymmetry on heart and lung dose, the effects of a metallic temporary tissue expander port on dose homogeneity and the overall conformity and homogeneity achieved in routine breast treatment planning. Differences in anatomical structure contouring and nomenclature were identified between the three centres, with all centres showing some non-compliance with the local planning protocol. When evaluated against standard conformity indices, these breast plans performed relatively poorly. However, when evaluated against recommended organ-at-risk tolerances, all evaluated plans performed sufficiently well that tighter planning tolerances could be recommended for future planning. Heart doses calculated in left breast and chest wall treatments were significantly higher than heart doses calculated in right sided breast and chest wall treatments (p < 0.001). In the treatment involving a temporary tissue expander, the inflated implant effectively pushed the targeted breast tissue away from the healthy tissues, leading to a dose distribution that was relatively conformal, although attenuation through the tissue expander's metallic port may have been underestimated by the treatment planning system. The results of this study exemplify the use of bulk treatment planning data to evaluate clinical workloads and inform ongoing treatment planning.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador , Relação Dose-Resposta à Radiação , Feminino , Coração/efeitos da radiação , Humanos , Pulmão/efeitos da radiação , Dosagem Radioterapêutica , Carga Tumoral/efeitos da radiação
11.
Australas Phys Eng Sci Med ; 39(1): 199-209, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26581763

RESUMO

This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinically-useful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.


Assuntos
Eletrônica Médica/instrumentação , Elétrons , Imageamento Tridimensional/instrumentação , Osso e Ossos/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Fótons , Reprodutibilidade dos Testes , Razão Sinal-Ruído
12.
Med Phys ; 42(12): 6798-803, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26632037

RESUMO

PURPOSE: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe(3+) diffusion. METHODS: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). RESULTS: This resulted in an optical density dose sensitivity of 0.014 Gy(-1), an auto-oxidation rate of 0.0005 h(-1), and a diffusion rate of 0.129 mm(2) h(-1); an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. CONCLUSIONS: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.


Assuntos
Hidrogéis , Ferro , Fenóis , Álcool de Polivinil , Radiometria/instrumentação , Sulfóxidos , Cátions/química , Difusão , Relação Dose-Resposta a Droga , Compostos Ferrosos/química , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/efeitos da radiação , Ferro/química , Estrutura Molecular , Oxirredução , Fenóis/química , Álcool de Polivinil/química , Radiometria/métodos , Sulfóxidos/química , Ácidos Sulfúricos/química
13.
Australas Phys Eng Sci Med ; 38(2): 289-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26025010

RESUMO

Given that there is increasing recognition of the effect that sub-millimetre changes in collimator position can have on radiotherapy beam dosimetry, this study aimed to evaluate the potential variability in small field collimation that may exist between otherwise matched linacs. Field sizes and field output factors were measured using radiochromic film and an electron diode, for jaw- and MLC-collimated fields produced by eight dosimetrically matched Varian iX linacs (Varian Medical Systems, Palo Alto, USA). This study used nominal sizes from 0.6 × 0.6 to 10 × 10 cm(2), for jaw-collimated fields, and from 1 × 1 to 10 × 10 cm(2) for MLC-collimated fields, delivered from a zero (head up, beam directed vertically downward) gantry angle. Differences between the field sizes measured for the eight linacs exceeded the uncertainty of the film measurements and the repositioning uncertainty of the jaws and MLCs on one linac. The dimensions of fields defined by MLC leaves were more consistent between linacs, while also differing more from their nominal values than fields defined by orthogonal jaws. The field output factors measured for the different linacs generally increased with increasing measured field size for the nominal 0.6 × 0.6 to 1 × 1 cm(2) fields, and became consistent between linacs for nominal field sizes of 2 × 2 cm(2) and larger. The inclusion in radiotherapy treatment planning system beam data of small field output factors acquired in fields collimated by jaws (rather than the more-reproducible MLCs), associated with either the nominal or the measured field sizes, should be viewed with caution. The size and reproducibility of the fields (especially the small fields) used to acquire treatment planning data should be investigated thoroughly as part of the linac or planning system commissioning process. Further investigation of these issues, using different linac models, collimation systems and beam orientations, is recommended.


Assuntos
Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/instrumentação , Reprodutibilidade dos Testes
14.
Australas Phys Eng Sci Med ; 38(2): 357-67, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25744538

RESUMO

There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6 × 6 to 98 × 98 mm(2). Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26  %, for the "very small" fields smaller than 15 mm, and 0.18 % for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within uncertainties. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2 % to the very small field output factors. The overall uncertainties in the field output factors were 1.8 % for the very small fields and 1.1 % for the fields larger than 15 mm across. Recommended steps for acquiring small field output factor measurements for use in radiotherapy treatment planning system beam configuration data are provided.


Assuntos
Eletrônica/instrumentação , Radiometria/instrumentação , Reprodutibilidade dos Testes , Incerteza
15.
Phys Med Biol ; 60(6): 2587-601, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25761616

RESUMO

This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity, modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, values of SAS (with multileaf collimator apertures narrower than 10 mm defined as 'small') less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360° arcs or as 60° sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Masculino , Sensibilidade e Especificidade , Resultado do Tratamento
16.
Phys Med ; 31(3): 281-5, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25693908

RESUMO

PURPOSE: This study investigates the effects of temporary tissue expanders (TTEs) on the dose distributions in breast cancer radiotherapy treatments under a variety of conditions. METHODS: Using EBT2 radiochromic film, both electron and photon beam dose distribution measurements were made for different phantoms, and beam geometries. This was done to establish a more comprehensive understanding of the implant's perturbation effects under a wider variety of conditions. RESULTS: The magnetic disk present in a tissue expander causes a dose reduction of approximately 20% in a photon tangent treatment and 56% in electron boost fields immediately downstream of the implant. The effects of the silicon elastomer are also much more apparent in an electron beam than a photon beam. CONCLUSIONS: Evidently, each component of the TTE attenuates the radiation beam to different degrees. This study has demonstrated that the accuracy of photon and electron treatments of post-mastectomy patients is influenced by the presence of a tissue expander for various beam orientations. The impact of TTEs on dose distributions establishes the importance of an accurately modelled high-density implant in the treatment planning system for post-mastectomy patients.


Assuntos
Elétrons/uso terapêutico , Fótons/uso terapêutico , Doses de Radiação , Dispositivos para Expansão de Tecidos , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Humanos , Mastectomia , Dosagem Radioterapêutica
17.
Aquat Toxicol ; 158: 63-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461746

RESUMO

Cerium nanoparticles (nCeO2) are widely used in everyday products, as fuel and paint additives. Meanwhile, very few studies on nCeO2 sublethal effects on aquatic organisms are available. We tried to fill this knowledge gap by investigating short-term effects of nCeO2 at environmentally realistic concentrations on two freshwater invertebrates; the amphipod Gammarus roeseli and the bivalve Dreissena polymorpha, using an integrated multibiomarker approach to detect early adverse effects of nCeO2 on organism biology. Differences in the behaviour of the organisms and of nanoparticles in the water column led to differential nCeO2 bioaccumulations, G. roeseli accumulating more cerium than D. polymorpha. Exposure to nCeO2 led to decreases in the size of the lysosomal system, catalase activity and lipoperoxidation in mussel digestive glands that could result from nCeO2 antioxidant properties, but also negatively impacted haemolymph ion concentrations. At the same time, no strong adverse effects of nCeO2 could be observed on G. roeseli. Further experiments will be necessary to confirm the absence of severe nCeO2 adverse effects in long-term environmentally realistic conditions.


Assuntos
Anfípodes/efeitos dos fármacos , Cério/toxicidade , Dreissena/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Biomarcadores/análise , Catalase/metabolismo , Cério/metabolismo , Dreissena/metabolismo , Ativação Enzimática/efeitos dos fármacos , Água Doce , Nanopartículas/metabolismo , Oxirredução/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
18.
Med Phys ; 41(11): 111702, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370616

RESUMO

PURPOSE: Small field x-ray beam dosimetry is difficult due to lack of lateral electronic equilibrium, source occlusion, high dose gradients, and detector volume averaging. Currently, there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). METHODS: Small field sizes were defined by BrainLAB circular cones (4-30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses (PDDs) were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated by Monte Carlo methods using BEAMnrc and correction factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. RESULTS: For the small fields of 4-30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. CONCLUSIONS: The authors conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.


Assuntos
Radiometria/métodos , Radiocirurgia/métodos , Algoritmos , Diamante/química , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Água/química , Raios X
19.
Med Phys ; 41(10): 101701, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25281940

RESUMO

PURPOSE: Two diodes which do not require correction factors for small field relative output measurements are designed and validated using experimental methodology. This was achieved by adding an air layer above the active volume of the diode detectors, which canceled out the increase in response of the diodes in small fields relative to standard field sizes. METHODS: Due to the increased density of silicon and other components within a diode, additional electrons are created. In very small fields, a very small air gap acts as an effective filter of electrons with a high angle of incidence. The aim was to design a diode that balanced these perturbations to give a response similar to a water-only geometry. Three thicknesses of air were placed at the proximal end of a PTW 60017 electron diode (PTWe) using an adjustable "air cap". A set of output ratios (ORDet (fclin) ) for square field sizes of side length down to 5 mm was measured using each air thickness and compared to ORDet (fclin) measured using an IBA stereotactic field diode (SFD). kQclin,Qmsr (fclin,fmsr) was transferred from the SFD to the PTWe diode and plotted as a function of air gap thickness for each field size. This enabled the optimal air gap thickness to be obtained by observing which thickness of air was required such that kQclin,Qmsr (fclin,fmsr) was equal to 1.00 at all field sizes. A similar procedure was used to find the optimal air thickness required to make a modified Sun Nuclear EDGE detector (EDGEe) which is "correction-free" in small field relative dosimetry. In addition, the feasibility of experimentally transferring kQclin,Qmsr (fclin,fmsr) values from the SFD to unknown diodes was tested by comparing the experimentally transferred kQclin,Qmsr (fclin,fmsr) values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. RESULTS: 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWeair) produced output factors equivalent to those in water at all field sizes (5-50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEeair) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated kQclin,Qmsr (fclin,fmsr) for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer kQclin,Qmsr (fclin,fmsr) from one commercially available detector to another using experimental methods and the recommended experimental setup. CONCLUSIONS: It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be "correction-free" depends strongly on its design and composition. A nonwater-equivalent detector can only be "correction-free" if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.


Assuntos
Radiometria/instrumentação , Ar , Algoritmos , Simulação por Computador , Elétrons , Desenho de Equipamento , Estudos de Viabilidade , Teste de Materiais , Método de Monte Carlo , Radiometria/métodos , Incerteza , Água
20.
Phys Med Biol ; 59(15): N129-37, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25049236

RESUMO

Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46  ±  0.04 dB m( -1) Gy( -1), being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024  ±  0.003 dB MHz( -1) Gy( -1); the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.


Assuntos
Géis/efeitos da radiação , Radiometria/métodos , Ultrassom/métodos , Radiometria/instrumentação , Tomografia Computadorizada por Raios X/métodos , Ultrassom/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...